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Abstract

Plane strain and plane stress slip-line solutions for single notched bending specimens with a central mismatched
welded joint have been derived. The crack has been located on the fusion line (interface) and at the middle of the
weld metal. 2D and 3D ®nite element analysis has been performed to verify the theoretical results and to investigate
the e�ect of specimen thickness. From these solutions, the stress distribution and deformation ®eld in the weld

metal, the expressions for the yield load as well as the constraint state at the crack tip are determined. The resulting
relations for estimating 3D e�ects coincide with the test results. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is well known that material heterogeneity, such as represented by a mismatched welded joint in an
engineering structure, may have strong e�ects on fracture behavior. `Mis-match' means that weld metal
and base material are di�erent in yield stress; this can be described by the parameter M:

M � sYW

sYB

�1�

where sYW and sYB are the yield stress of the weld metal and the base material, respectively. M < 1
refers to undermatching, M > 1 represents overmatching.
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Di�erences in elastic material properties as well as in strain hardening exponents also play a

role, however, in this paper we only focus on the problem of a mismatch in yield strengths.

Fig. 1 shows a family of load-Jintegral curves for SENB specimens with the same geometry but

di�erent mis-match levels in yield strength, Hao et al. (1995). From this diagram one sees that at low

loads all curves coalesce. This is because under this initial loading the linear elastic ®eld still dominates

Nomenclature

a crack length for SENB specimen or half crack length for CCT specimen
B thickness of welded joint
E elastic modulus
F applied load for unit thickness
H half height of weld metal strip
kB, kW shear yield stress of base (B) and weld (W) material, respectively
M mismatch factor, M � sYW=sYB

MF applied moment for unit thickness
MFY yield moment for a homogeneous specimen with unit thickness
MFYL moment characterising the beginning of local yielding, per unit thickness
MFYM yield moment of a mismatched welded joint, per unit thickness
MFYB yield moment of an all-base material specimen, per unit thickness
MFYW yield moment of an all-weld material specimen, per unit thickness
NB, NW hardening exponents of base (B) and weld (W) material, respectively
NM1 mismatching hardening exponents at net-section yielding stage
r, j polar coordinates
x1, x2 Cartesian coordinates
ui, displacement components �i � 1, 2)
vi, velocity components �i � 1, 2)
Q constraint parameter at crack tip
Ti traction force on a body surface
Vp plastic component of CMOD
W width of SENB specimen
eij strain components; i, j � 1, 2 (Cartesian coordinates), i, j � r, j (polar coordinates)
y angle between an a slip-line group and the horizontal direction
j, r polar co-ordinates
se equivalent von Mises stress
sij stress components; i, j � 1, 2 (Cartesian coordinates), i, j � r, j (polar coordinates)
sm mean stress: sm � �s11 � s22�=2; in plane strain condition, sm equals the triaxial stress:

sm � sijdij=3
sY yield stress
sYB, sYW yield stress of base (B) and weld (W) material, respectively
n Poisson's ratio
CCT centre crack tension panel
ETM-MM Engineering Treatment Model for Mismatched structures
CTOD crack tip opening displacement
CMOD crack mouth opening displacement
SENB single-edge notched bend specimen
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the crack tip ®eld, as assumed there is no mis-match in elasticity properties. With increasing load the
curves diverge. This e�ect becomes very obvious in the fully plastic condition. From this diagram it is
seen that the `transition point' from the linear elastic stage to the fully plastic stage shifts its position,
depending on the degree of mismatch, and under the same load level the variation in J-integral can be
more than 1±100. Therefore one can conclude that the yield strength mis-match has a strong e�ect on
the deformation behaviour in the elastic±plastic regime. The limit load, which symbolizes the above
mentioned transition point, is a very important parameter for the crack driving force estimation in
structures with mis-matched welded joints.

E�orts are being undertaken by various research groups to extend existing failure assessment
procedures to heterogeneous structures, such as mismatched welded joints. This is of particular
importance for undermatching cases, since as Fig. 1 shows, an assessment based on the assumption of
homogeneous material �M � 1), may severely overestimate the load carrying capacity of a con®guration
with M < 1:

A joint French activity at ElectriciteÂ e de France and Framatome is aimed at modifying the EPRI
Handbook (Kumar et al., 1981), by creating yield load solutions for characteristic mismatch
con®gurations which have then to be used in the EPRI handbook J formulas; the resulting procedure is
referred to as the ARAMIS Method (Gilles and Franco, 1994). The yield loads are determined using
slip-line theory.

The EPRI Handbook is also used by a research group at Edison Welding Institute and tailored to
mismatch, Wang et al. (1996). The thus obtained J results are then used as input for a modi®ed failure
assessment diagram in the British document PD-6493 (British Standard Institution, 1991).

The R6 document (Milne et al., 1986), is being modi®ed by Nuclear Electric. Limit loads have been
derived for bend bars using slip-line theory (Joch et al., 1993; Burstow and Ainsworth, 1995).
Furthermore, the relation between J and the CTOD has been discussed (Joch and Ainsworth, 1994).

A similar activity is being carried out in the authors' group. The Engineering Treatment Model
(ETM) is a method for estimating the CTOD in terms of d5 and the J-integral as driving force
parameters (Schwalbe, 1992). Its extension to heterogeneous structures Ð the ETM-MM Ð uses the

Fig. 1. Illustration of the e�ect of mismatching on the J-integral, ®nite element analysis (Hao et al., 1995).
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basic ETM formulas with mismatch modi®ed yield loads (Schwalbe et al., 1994; Hao et al., 1994a,
1994b, 1997). Up to now the center cracked tensile panel (CCT) has been treated, deriving yield loads
for plane stress and plane strain (Hao et al., 1994b, 1997). The main tool is again the plane strain slip-
line theory, amended by FE analyses including materials with strong strain hardening. Using FE
analysis, some 3D studies have also been carried out (Hao et al., 1994a, 1994b).

In the present paper we will focus on the cracked bar under pure bending. In the homogeneous case
the slip-line solution and corresponding expression of the yield load of notched bend bars have been
derived by Hundy (1954) for a deep crack, and by Ewing and Hill (1967) for a shallow crack. Assuming
that in mismatch specimens Hundy's slip-line ®eld is available, the e�ect of the yield strength di�erence
on the yield load and the relation between the J-integral and the CTOD for three point bending
specimens has been discussed by Joch et al. (1993, 1994). Combining test results and numerical
calculation (Reuter et al., 1994), have analyzed the constraint state and fracture behaviour of severely
undermatched interleaf specimens �M < 0:5� with varying thickness under pure bending. They have
found that when the ratio of weld metal height to remaining ligament length reaches 0.3 then there
could be a transition from pop-in crack extension to stable crack growth. This means: a narrow
undermatched weld layer can lead to a higher constraint state at the crack tip.

In the present work the main emphasis will be on extreme undermatching where the base material
remains elastic. Solutions for plane strain and plane stress yield loads will be derived using slip-line
theory. The case of moderate mismatch, where plastic deformation takes place both in weld metal and
base plate will be treated as well. Finite element analysis will amend the slip-line work and provide some
insight into 3D e�ects.

2. Idealizations

An actual welded joint is rather complicated, both metallurgically and geometrically, as depicted

Fig. 2. The simpli®ed model of a welded joint with heterogeneity.
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schematically in Fig. 2(a). For simpli®cation in the following analysis the e�ects of heat a�ected zones,
residual stresses or other kinds of heterogeneity are omitted; the fusion line (see Fig. 2(a)) is modeled as
an interface in a bi-material system as shown in Fig. 2(b). In this paper, the two models analyzed are
shown in Fig. 3, in which the crack lies in the center line or the interface (fusion-line) of the welded
joint. Both materials have the same elastic modulus and Poisson's ratio but the yield strength of the
weld metal is lower or higher than that of the base material.

For the slip-line ®eld analysis, the material is assumed to obey the law of elastic-perfect plasticity.
Obviously, according to the di�erence in yield strength three possibilities exist: (i) plastic zone being
con®ned to the soft weld metal layer (see Fig. 4(a)); (ii) penetrating both materials (see Fig. 4(b)) or (iii)
most plastic deformation occurring in the base material (see Fig. 4(c)) when the yield strength of the
weld metal is much higher than that of the base material. The ®rst case is hereafter referred to as
`extreme undermatching' and will be treated in detail in the next section. The solutions for penetrating
deformation ®eld have also been derived in an approximate manner and will be presented afterwards. In
`case (iii)', the existence of a crack does not play any role in the ductile fracture behaviour as the plastic
deformation takes place only in the base metal, so that it will not be discussed in this paper.

The models analysed are compiled in Fig. 3. They are characterized by two material parameters, sYB

and sYW, and four geometrical parameters, a, W, H, and B, where B is the thickness of the model. In
the present work, mainly the slip-line theory has been used for the analyses which allows to derive
theortical solutions under plane strain and plane stress conditions. Such analytical expressions are
convenient for engineering application. In addition, some ®nite element analyses have been performed to
verify solutions and to obtain some results for 3D cases. As isoparametric elements may cause numerical
problems in the fully plastic range (see Nagtegaal et al., 1974) the ABAQUS hybrid elements CPE8H
and C3D20H, i.e. a quadratic displacement formulation with linear pressure, have been applied. A
typical 3D mesh is shown in Fig. 17.

Fig. 3. The models analysed.
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3. Extreme undermatching

3.1. The basic equations

Since in the case of extreme undermatching, all the plastic deformation is con®ned to the weld metal
and the elastic strain is very small as compared to the plastic strain, it is reasonable to assume the
following:

1. The base material is rigid.
2. The weld metal is rigid-perfectly plastic, obeying the von Mises yield criterion.

Thus, the slip-line ®eld analysis of the general problems in Fig. 3(a) and (b) is simpli®ed to the single-
edge cracked ®nite width strips within the rotated rigid top and bottom boundaries, on which a pair of
constant moments `MF' is acting. It can mathematically be expressed as:

at x2 �2H:

�W
0

x1s22 dx1 �2MF;

�W
0

s22 dx1 �
�W
0

s12 dx1 � 0; s12RkW �2a�

at x2 �20 and 0Rx1Ra: s22 � s12 � 0

x1 � 0 and x1 �W: s11 � s12 � 0 �2b�

Plane strain e33 � e13 � e23 � 0

Plane stress s33 � s13 � s23 � 0 �2c�
where sij and eij denote stress and strain components, respectively and, kW is the shear yield stress of the
weld metal.

In the present work the slip-line ®elds have been constructed for the middle and interfacially cracked
layer with varying �Wÿ a�=H ratio. The corresponding expressions for yield load and the constraint
parameter Q are deduced and listed in the following sections, where the parameter Q is de®ned by
O'Dowd and Shih (1992) in the form

Fig. 4. Various deformation ®elds, depending on the mis-match level.
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Q � sjj ÿ sjj, HRR

sY

����
j�0,

rsY

J
�2

�3a�

for a material with strain hardening and

Q � sjj ÿ sjj, Prandtl

sY

����
j�0,

rsY

J
�2

�3b�

for a material obeying the perfectly-plastic law; where j is the angle in the polar coordinate system
centered at the crack tip and the subscript Prandtl denotes the stress component calculated from the
solution of the Prandtl crack tip ®eld.

3.2. Middle crack in pure bending, plane strain condition

Obviously, under this condition the stress-strain distribution in the weld metal layer is determined by
the layer geometry, i.e., the ratio of �Wÿ a�=H (Fig. 3(a)).

Case I: (�Wÿ a�=HR1:976). In this case mismatching does not play any role since the distance from the
boundary of the base material to the crack tip is larger than the active plastic zone size under
homogeneous conditions. Thus, the existence of the yield strength mismatch does not impose any extra
constraint on the deformation ®eld in the weld metal layer. From Hundy's ®eld (see Hundy, 1954) for
homogeneous pure bending (Fig. 5(a)), the stress distribution can be easily obtained using the traction-
free boundary condition at the side AA ' in the compression zone ABCB 'A ':

s11 � 0, s22 � ÿ2kW, s12 � 0, sm � ÿkW �4a�
and on the slip arc OB:

sm � kW�2yÿ 1�

s11 � sm � kWcos 2y, s22 � sm ÿ kWcos 2y, s12 � kWsin 2y �4b�
The corresponding yield load for unit thickness can be derived by integration along the arc OB and the
straight line BA:

MFYM �
�b
0

kWr2 dy� kWl
���
2
p �

r� l

2

�
�4c�

where the constants r, l, and b are determined by the geometrical requirement below (refer to Fig. 6(a))

Wÿ aÿ l���
2
p ÿ r

�
1���
2
p � sin

�
bÿ p

4

��
� 0

and by the equilibrium conditions in the horizontal and vertical directions�
OBA

s1ini ds � 0,

�
OBA

s2ini ds � 0 �5�

where ni are the direction cosines of the vector which is normal to the in®nitesimal small line segments
on OBA.
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Fig. 5. The slip-line ®elds and corresponding distribution of the triaxial stress on the ligament for extreme undermatching, single

edge cracked specimen (SENB) under pure bending.
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The result of Eq. (4c) is then

MFYM � 0:6309
sYW�Wÿ a�2���

3
p �6�

However, from the stress state (see Eqs. (4a) and (4b)) as well as the stress distributions for the cases
shown in Fig. 5(b) and (c), we cannot determine the parameter Q at the crack tip directly, as in these
cases the slip-line ®eld solution for the bending con®guration can only give the stress components along
the slip-lines which radiate from the crack tip and which are inclined to the horizontal line with an angle
larger than 458. From this kind of slip-line ®elds the stress ®eld surrounding the crack tip is not
uniquely obtainable. In Fig. 6 two possible stress distributions are illustrated. In this ®gure we assume,
asymptotically, that a small piece of straight slip-line O 'O (or O 'O0) exists. It radiates from the crack tip
and is connected to the arc OB in the global slip-line ®eld as shown in Fig. 6. Thus, the stress
components on these small lines are constant and equal to the components at the point O on the arc OB
in Fig. 6, for example, using Eq. (4b). From Fig. 6 one sees that the plastic deformation may expand
from the line O 'O (or O 'O0) ahead of the crack tip and form a diamond-like plastic zone O 'HFH ' like
that in Prandtl ®eld (Fig. 6(a)), or be con®ned to a small fan-like ®eld with the material in the area just
ahead of the crack tip staying in the elastic state (Fig. 6(b)).

Hereafter we use the subscript O 'O0 to denote the quantities on O 'O (or O 'O0). For the case in
Fig. 6(a) the stresses in the diamond-like zone O 'HFH ' can be calculated by slip-line theory as shown
by O'Dowd and Shih (1992). They are given as follows:

sm � sm, O 0O � 2kWyHO 0O

s11 � sm ÿ kW, s22 � sm � kW, s12 � 0

where yHO 0O represents the angle between the lines O 'H and O 'O.
Thus, according to the de®nition in (4b), in this case the constraint at the crack tip is

Qupper � sm, O 0O � kW�2yHO 0O ÿ pÿ 1�
sYW

�7�

where the subscript `upper' means that the relation (6) is an `upper bound estimate' for the constraint
state because of presuming the plastic zone O 'HFH '.

For the case in Fig. 6(b), in the fan O 'HH ' material points remain elastic. A boundary-value problem
has been formulated as follows:

Fig. 6. Illustration of the asymptotic slip-line ®eld ahead of a crack tip of a bending specimen: (a) upper-bound solution; (b) lower-

bound solution.
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DDF�r, W� � 0 �8a�

sWWjW�2j0
� sm, OH, srWjW�2j0

�2kW �8b�

where F is Airy's stress function:

sWW � @ 2F
@r2

, srr � @F
r@r
� @ 2F

r2@W2
, srW � ÿ @

@r

�
@F
r@W

�
Using the general theory of elasticity (see Timoshenko and Goodier, 1970), it is not di�cult to
determine the dominating term of F according to the boundary condition (8b). After having investigated
several examples for the solutions of Eq. (8a) we ®nd that we can simply use the expression

Qlower � sm, O 0O ÿ kw�p� 1�
sYW

�9�

as the `lower bound estimate' of the constraint state for the bending con®guration.
The asymptotic ®elds in Fig. 6 and the resulting relations (7) and (9) are generally applicable to the

bending con®guration with any ratio of �Wÿ a�=H: Thus, from the slip-line ®eld in Fig. 5(a) one can
determine sm, O 0O, so that from Eqs. (7) and (9) one obtains

Qupper � ÿ0:01745; Qlower � ÿ0:4538 �10�

Case II: (1:976 < �Wÿ a�=HR4:484). In Fig. 5(b) the global kinematically available deformation ®eld,
(i.e., the arc slip-line connecting the crack tip to the compression zone) is similar to the ®eld in Fig. 5(a).
However, the size of the compressive plastic zone is reduced because of the limited height of the weld
metal, although a fan-shaped ®eld centered at the interface edge emerges (denoted as ABE in Fig. 5(b)),
accompanied by an increased compressive stress, whereas a slightly increased stress appears at the crack
tip and the global yield load is also elevated. This stress state can be expressed as follows in the
compression zone AECE 'A ':

s11 � 0, s22 � ÿ2kW, s12 � 0, sm � ÿkW �11a�
on the slip arc EB

sm � kW�2y 0 ÿ 1�

s11 � sm � kWcos 2y 0, s22 � sm ÿ kWcos 2y 0, s12 � kWsin 2y 0 �11b�
where y 0 indicates the position of the material point on the slip line arc EB; at the point, E y 0 � 0 and
at the point B, y 0 � a:

On the arc OB

sm � kW�2y� 2aÿ 1�

s11 � sm � kWcos 2�y� a�, s22 � sm ÿ kWcos 2�y� a�, s12 � kWsin 2�y� a� �11c�
The global yield load of the slip-line ®eld in Fig. 5(b) can be calculated using
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MFYM �
�b
0

kWr2 dy� �2aÿ 1�kWl

�
r� l

2

�
�11d�

For the slip-line ®eld in Fig. 5(b), there are four unknown variables: r, l, a and b: They are determined
by using the equilibrium condition, Eq. (5), and the following geometric requirements:

Wÿ aÿ lcos

�
p
4
ÿ a

�
ÿ r

�
cos

�
p
4
ÿ a

�
� cos

�
a� bÿ p

4

��
� 0 �11e�

and

Hÿ lsin

�
p
4
ÿ a

�
ÿ r

�
sin

�
p
4
ÿ a

�
ÿ sin

�
a� bÿ p

4

��
� 0 �11f�

For varying �Wÿ a�=H the integral (11d) has been solved and the results are ®tted by the following
polynomial:

MFYM � sYW�Wÿ a� 2���
3
p

�
0:6315ÿ 0:01059c� 0:0049c2

�
�12a�

where

c � Wÿ a

H

and the upper and lower constraint parameter Q at the crack tip is given as:

Qupper � 0:9745ÿ 1:13665c� 0:3123c2 for 0:506R 1

c
< 0:4424

Qupper � 0 for 0:4424R 1

c
< 0:223 �12b�

and

Qlower � ÿ0:6373� 0:1257cÿ 0:016175c2 �12c�

Case III: (4:484 < �Wÿ a�=HR7:08). When the value of �Wÿ a�=H reaches 4.484, the top of the
rotation arc will touch the interface between the weld and the base metal BC at the point D in Fig. 5(c).
This hinders the fact that a stronger constraint provided by the base metal takes place which con®nes
the slip-line ®eld in weld metal with a large rotation angle b: A stress jump will emerge at the point F
(or F ') to maintain the rotation along the arc OB and keep the global equilibrium. This jump is similar
to a `plastic hinge' for a plastic beam under bending in the homogeneous case: the material points on
the line connecting point F and F ' in Fig. 5(c) are in an elastic condition because on the left side of the
point F (or F ') tension dominates whereas on the right side compression dominates. According to the
stress distributions introduced in the following, the unknown variables in Fig. 5(c): r, l, a, b, and the
position of the point F as well as the value of the stress discontinuity, are determined by the global
equilibrium condition (5), the geometrical requirements, Eqs. (11e) and (11f), and the following
condition:
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bÿ arp
2

�13a�

When �Wÿ a�=H � 7:08, the stress jump reaches a maximum value �Ds22 � 4kW� and the point F
coincides with the point D. From the slip-line ®eld in Fig. 5(c), we obtain the stress distribution on the
ligament in the compression zone ACA ' as follows:

s11 � 0, s22 � ÿ2kW, s12 � 0, sm � ÿkW �13b�
On the arcs CB and BF the stress distribution can be expressed by Eqs. (11b) and (11c)).

Assuming that at the point F there is a jump of sm, i.e., Dsm; then the stresses on the arc ODF are:

sm � kW�2y� 2aÿ 1� � Dsm

s11 � sm � kWcos 2�y� a�, s22 � sm ÿ kWcos 2�y� a�, s12 � kWsin 2�y� a� �13c�
In comparison with the case in Fig. 5(b), an additional variable appears, which is resolved by using Eq.
(16a) within an equality sign.

The corresponding yield load has been derived by Eqs. (11b)±(11d), 13(b) and (13c) and it is ®tted by
a polynomial of the form:

MFYM � sYW�Wÿ a� 2���
3
p

�
0:4445� 0:0616cÿ 0:00176c2

�
�14a�

and the constraint parameter Q at the crack tip has a value between:

Qlower � 0:01ÿ 0:30846c� 0:04339c2 and Qupper � 0 �14b�
Checking this relation one may ®nd that when �Wÿ a�=H approaches 7.08 the value of Qlower vanishes
so that Qlower � Qupper: Under this condition the high constraint provided by the rigid base material
con®nes the formation of a unique Prandtl ®eld to the crack tip.

Case IV: (7:08 < �Wÿ a�=HR11:834). In this case a Prandtl ®eld has already formed at the crack tip
and the stress level in this area cannot be changed any more. Increasing the ratio of �Wÿ a�=H will
result in increasing size of the Prandtl ®eld around the crack tip, until �Wÿ a�=H � 11:834 when the top
of the Prandtl ®eld touches the interface between the weld and the base metals. The slip-line ®eld has
been constructed as shown in Fig. 5(d). The slip-line ®eld PABA 'C has already been given in the case of
CCT in Appendix 1 of Hao et al. (1997). The stress distribution in the Prandtl ®eld is well known; at
the point O it gives

s11jO � pkW, s22jO � �2� p�kW, smjO � �1� p�kW �15a�
On the arc OD:

sm � smjO ÿ 2kW�bÿ y�

s11 � sm � kWcos 2y, s22 � sm ÿ kWcos 2y, s12 � kWsin 2y �15b�
On the arc DB:

sm � smjO ÿ 2kW�2� bÿ y�
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s11 � sm � kWcos 2y, s22 � sm ÿ kWcos 2y, s12 � kWsin 2y �15c�
The corresponding yield load has been calculated by integrating the stress along the slip-lines on the
ligament and the result is ®tted by the polynomial:

MFYM � sYW�Wÿ a� 2���
3
p �

0:5837� 0:0299c
� �16a�

Because in this stage a Prandtl ®eld exists at the crack tip

Q � 0 �16b�

Case V: (�Wÿ a�=H > 11:834). When the size of the Prandtl ®eld equals half the height of the weld
metal layer, the state of stress distribution around the crack tip is ®xed regardless of how large the ratio
�Wÿ a�=H! In addition to the high stress value at the crack tip, a second stress peak ahead of the front
of Prandtl ®eld appears because of the severe constraint on the ligament. The value of this stress peak
and its distance from the crack tip increases with increasing �Wÿ a�=H: On the right side of the stress
discontinuity line (the plastic hinge) the deformation condition is similar to the case of `the compression
of a perfectly plastic block between rough rigid plates' introduced by Hill (1951) and Prandtl (1923) and
on the left side it is similar to the case of `extremely undermatched CCT under tension' which has been
shown by Hao et al. (1997). In both cases the slip-lines can be described by two orthogonal cycloid
families. The slip-line ®eld is shown in Fig. 5(e), for which the stress ®eld has been given by Hao et al.
(1997), Hill (1951) and Prandtl (1923) and the corresponding yield load can be easily obtained. It is
®tted by the polynomial:

MFYM � sYW�Wÿ a� 2���
3
p �

0:5676� 0:03115c
� �17a�

with the constraint at the crack tip:

Q � 0 �17b�
Using slip-line theory, expressions for yield load and constraint have been derived for the whole range
of �Wÿ a�=H values. Corresponding ®nite element modeling has also been performed. Fig. 7(a)
compares the limit moment determined using Eqs. (6), (12a), (14a), (16a) and (17a) with that determined
by ®nite element calculations. Fig. 7(b) shows the constraint and its dependence on the weld metal
geometry, determined by the slip-line solutions for bending and tension con®gurations and compared
with the ®nite element calculations. Fig. 8 illustrates the stress distribution for the case
H=�Wÿ a� � 12:5, obtained using the slip-line solution and ®nite element modeling. On this diagram
one clearly sees the stress jumping at the `plastic hinge' and the two stress peaks at about the middle
position on both the tension and compression sides.

4. Slight undermatching and overmatching

4.1. Central crack, plane strain condition

The solutions discussed in the previous section have been derived under the assumption that the base
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Fig. 7. (a) Comparison of the yield load derived from the slip-line solutions and ®nite element analysis for extreme undermatching.

(b) Constraint and its dependence on geometry, the CCT data were taken from Schwalbe et al. (1994).

Fig. 8. Stress distribution ahead of the crack tip on the ligament �x 2 � 0� for the case of Fig. 5(e), slip-line solution and ®nite el-

ement calculation.
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material is rigid or deforms only elastically so that the plastic deformation is always con®ned to the
weld metal, this represents extreme undermatching. If the base material deforms plastically but the
mismatch in yield stress, expressed by the factor M � �sYW=sYB� is still much smaller than unity, the
extreme undermatching condition can also hold so that the slip-line solutions obtained previously are
still applicable. However, if the ratio M is close to, but still less than unity, undermatching is still
present and plastic deformation may extend from the weld strip into the base material. This is because
the base metal is not strong enough to remain in the elastic state and to maintain the high constraint as
in the case for extreme undermatching. If the ratio M is greater than unity, in other words, for
overmatching condition, the plastic zone will penetrate both metals.

According to the degree of mismatch and the value of the ratio H=�Wÿ a� the plastic deformation
may begin at the crack tip and penetrate both metals or take place merely in the base metal when M is
large, as illustrated in Fig. 4(b) and (c). Only the former will be taken into account in the present work.

As mentioned above, for a mismatched joint in bending the `assumed slip-line ®eld' as shown in
Fig. 9(a), which is similar to the homogeneous case, has been introduced and the relationship between
the J-integral and the CTOD has been investigated by Joch et al. (1993, 1994) and Burstow and
Ainsworth (1995). It has been reported that for a large range of �Wÿ a�=H values and mismatching
degrees the solutions based on the slip-line ®eld in Fig. 9(a) provide satisfactory estimates for
application.

However, it is well known that the classical slip line theory is derived for homogenous perfectly-plastic
material (see Refs. Prandtl, 1923; Hill 1951). In the case of slip-lines penetrating an interface in a bi-
materials system (e.g. Fig. 3), additional conditions and requirements are necessary. According to the
discussion in Appendix A, in the present work two kinds of slip-line ®elds for bending have been
constructed, Fig. 9(b) and (c). For the slight mismatching condition, the ®eld in Fig. 9(b) is presented.
The slip-lines radiate from the crack tip and penetrate both materials. However, due to the traction-free
boundary condition on the side AA ' the slip-line has to intersect the line AA ' below 458. Thus, a

Fig. 9. (a) The `assumed' slip-line ®eld suggested by Joch et al. (1993, 1994). (b) The slip-line ®eld for slight mismatching. (c) The

slip-line ®eld for strong overmatching.
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constant compressive stress zone ABB 'A ' appears on the ligament away from the crack tip. With
increasing overmatching, deformation along the slip-line ®eld shown in Fig. 9(c) will dominate, because
in the weaker base metal plastic deformation becomes more favorable. In this case the interface edge is
a singularity point of stress and strain. In engineering application crack initiation and growth could
occur at this point, instead of the crack tip, as the latter is surrounded by the harder weld metal. When
M is higher than a certain value, plastic strain will be suppressed in the weld metal. In this case the
deformation ®eld shown in Fig. 4(c) is present. To verify the slip-line ®elds constructed in Fig. 9(b) and
(c), the equivalent plastic strain contours obtained by ®nite element analysis are shown in Fig. 10.
Fig. 11(b) shows the yield load as determined from the slip-line solutions together with some ®nite
element results.

Similar to the analysis by Hao et al. (1997), we de®ne the yield load ratio R:

R � MFYM, penetrating slip-line

MFYM, weld strip slip-line

�18�

For R < 1 the penetrating slip-line solution, i.e. the solution given in Fig. 9(b), is relevant whereas for
R > 1 the slip-line con®ned in the weld strip is valid, see Hao et al. (1997), Fig. 12. Based on the slip-
line analysis and numerical calculation, the parameter R can be expressed approximately in the form as:

R � MFYB � f�j,M�
MFYM, weld strip slip-line

; jR1 �19�

where MFYM, weld strip slip-line is determined by Eqs. (6), (12a), (14a), (16a) and (17a); and

f�j, M�11ÿMj�Mÿ 1��jÿ 1�, j � 1:976
H

Wÿ a
�20�

4.2. Extreme undermatching: interface crack, plane strain condition

Without great alteration of the results obtained previously we may derive the slip-line ®elds for the
case that the crack is located on the fusion line (interface crack). Because of the limited space we
consider only the condition of extreme undermatching with a large �Wÿ a�=H ratio ��Wÿ a�=H > 11:5).
The slip-line ®eld is shown in Fig. 12(a). Fig. 12(b) displays the contour of equivalent plastic strains
from the ®nite element calculation, demonstrating good agreement of both approaches. The
corresponding yield load can be expressed by a polynomial of the form:

MFYM � sYW�Wÿ a� 2���
3
p �0:58091� 0:0321644c� for c > 11:5 �21�

In this case the maximum principal stress at the crack tip front is

sjj � sYW�1� 1:5p����
3
p �22a�

If we assume that the de®nition of constraint state in (4b) is still applicable for an interface crack, then
Eq. (22a) can be substituted into (4b) to obtain Q:
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Fig. 10. Finite element modeling for the cases in Fig. 9(b) and (c).
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Q �
���
3
p �p=2ÿ 1�

4
� 0:22 �22b�

4.3. Extreme undermatching: central crack, plane stress solution

The slip-line solution is illustrated in Fig. 13, which has been constructed using Hutchinson's solution
(Hutchinson, 1968) at the crack tip connected to the ®eld ABCDO on the ligament. In-between there is
a stress jump. The stress distribution can be described by

in AOB

sr � sYW

2
�cos 2yÿ 1�; sy � ÿsYW

2
�1� cos 2y�; sry � ÿsYW

2
sin 2y �23a�

in BOC

sr � sYW

4

��1ÿ cos 2yAOB �cos 2�yÿ yAOB � ÿ 3cos 2yAOB ÿ 1ÿ 2sin 2yAOBsin 2�yÿ yAOB �
�

sy � ÿsYW

2
�1� 3cos 2yAOB � ÿ sr;

sry � sYW

2

��cos 2yAOB ÿ 1�sin 2�yÿ yAOB� ÿ 2sin 2yAOBcos 2�yÿ yAOB �
� �23b�

and

Fig. 11. Yield load obtained from the slip-line solutions for under and overmatching, plane strain, normalized with the yield load

of a homogeneous specimen made of base material; and comparison with some FE results.
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yAOB � 27:788 �23c�
in COD

sr � sYW

2
���
3
p cos y, sy � sYW���

3
p cos y; sry � sYW���

3
p sin y �23d�

From this solution the yield load is

MFYM � 2sYW���
3
p

�
x 2
1 � x 2

2 �
1:89

���
3
p

2
H�x2 � 0:945H�

�
for

Wÿ a

H
> 1:89 �24�

where

x1 � Wÿ aÿ 0:2532H

2
; x2 � Wÿ aÿ 1:8661H

2

5. The e�ect of thickness

When an actual bend specimen with ®nite thickness is considered, the question of how to determine
its yield load arises.

For the cases of slight undermatching and overmatching, the global slip-line ®elds as shown in
Fig. 9(b) and (c) are similar to the homogeneous case shown in Fig. 5(a). Because thickness e�ects in
homogeneous specimens are well understood, in this section we focus on the 3D bending con®guration
within an extremely undermatched welded joint.

A 3D ®nite element analyses for specimens with seven thicknesses, ranging from B/W = 0.02 to 1,
have been performed. Three results are shown in Fig. 14, from which one ®nds that the shape of the
plastic zone at the middle section of specimens is similar to that derived by the slip-line ®eld in 2D
condition. For example, in the thinnest specimen the plastic zone is close to that indicated in Fig. 13
under plane stress condition. In the thickest specimen it has the same type as given in Fig. 5(e), an
obvious Prandtl ®eld can be observed in the middle section near the crack tip. Clearly, for this specimen
the thickness is large enough to maintain plane strain condition in its middle section.

Numerical ®tting has been used to the data calculated for the seven thicknesses. The yield load of
extremely undermatched bend specimens can be expressed by the polynomial expression:

if B�
�

KI

sYW

�2

, 4 <
Wÿ a

H

for the case B=H < 20

MFYM �MFYM, plane stress

�
1� DMFYMf

�
B

H

��
�25a�

where

f

�
B

H

�
� ÿ0:0183� 0:083

�
B

H

�
� 0:0054

�
B

H

�2

ÿ0:0007
�
B

H

�3

�0:0000168
�
B

H

�4
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DMFYM � MFYM, planes strain ÿMFYM, planes stress

MFYM, planes stress

for the case B=Hr20

MFYM �MFYM, plane strain �25b�
The calculated limit moments for these seven thicknesses are displayed in Fig. 15, on which several
examples of CCT specimens from Hao et al. (1994a, 1994b) are also plotted. Both tension and bending
con®gurations exhibit an S-like dependence on thickness. However, when B=Hr8 the yield load for the
tension specimens is almost equal to that in plane strain condition. For the bending con®guration, the
plane strain dominance occurs at B=Hr20: More numerical analyses are necessary to investigate the
e�ect of thickness on the fracture behaviour of mismatching specimens.

6. Discussion

The ®ndings presented in this paper are similar to those reported in our previous paper on the CCT
geometry (Hao et al., 1997). It could again be demonstrated that the slip-line theory is a powerful tool
for determining local stresses (see Figs. 5, 7(b) and 8) and yield loads (see Figs. 7(a) and 11) if the
material under consideration can be regarded as deforming in an ideally plastic manner. It remains to be
determined how strain hardening will a�ect these results. From the local stresses the constraint
condition in terms of Q can be derived. Thus, essential items of the mechanical behaviour of a cracked
mismatched component can be quantitatively formulated employing relatively simple slip-line models.

The stress peak found by Hao et al. (1997) ahead of the crack tip in the tensile loaded undermatched
con®guration was also found under bending loading, Fig. 8. In addition, on the compression side of the
bend bar a second peak of about the same magnitude Ð now as a compressive stress Ð was observed.
This stress pattern shows Ð although due to the presence of the crack Ð that a risk of failure in an

Fig. 15. Relationship between the yield moment and yield load, respectively, and the ratio B/H (thickness/half welded joint height);

bending and tension cases; the CCT specimen is from Hao et al. (1997), specimens A, B, and C are from Reuter et al. (1994).

S. Hao et al. / International Journal of Solids and Structures 37 (2000) 5385±5411 5407



undermatched component should be considered at locations remote from the crack tip. This is
emphasized by the strain pattern depicted e.g., in Figs. 8, 10 and 12(b).

Interesting support for these conclusions is given by the experimental work by Reuter et al. (1994);
decreasing H for a given thickness of undermatched bend specimens, hence increasing B/H, created
constraint conditions approaching plane strain, Fig. 15. As a consequence, failure of a specimen with a
low B/H value took place by stable crack growth, whereas two specimen with larger B/H values
exhibited failure initiation ahead of the crack tip followed by pop-in, Fig. 15.

As long as plastic deformation remains con®ned to the weld metal, i.e. as long as `extreme
undermatching' is realized, the yield load increases with the normalized ligament length, �Wÿ a�=H,
Fig. 7(a). The increase, however, is substantially lower than under tension, see Fig. 9 in Hao et al.
(1997). As an example, at �Wÿ a�=H � 10 under bending the mismatch yield load is about 1.4 times
that of a homogeneous weld metal bend bar, whereas tensile loading gives rise to a factor of 2.4 fold
elevation of the mismatched yield load compared to the homogeneous weld metal case. This is due to
the di�erent slip-line geometries: under bending the slip lines expand much less in the lateral direction
(perpendicular to the crack plane) than under tension so that the restraint exerted by the sti� base metal
has a lesser e�ect on the slip line expansion.

Looking at the 3D behaviour, tensile loading leads to more rapid approach to plane strain with
increasing thickness than bending loading, Fig. 15.

Finally, the decay of the mismatch e�ect on the yield load of overmatched welds with increasing
�Wÿ a�=H, Fig. 11, is very close to the behaviour of tensile loaded plates, see Fig. 18 in Hao et al.
(1997). In both cases, for �Wÿ a�=Hr10 the yield load is dominated by the base metal properties.
Similarly, under both loading conditions undermatched welds are more dominated by the weld metal.

7. Conclusions

1. Plane strain and plane stress slip-line solutions for a pure bending specimen with di�erent �Wÿ a�=H
values and di�erent degrees of mismatch have been constructed. From these solutions formulas for
the limit moment and the constraint parameter Q have been established. They can be expressed in
simple analytical form and can easily be used for application.

2. A high level of yield strength undermatch leads to a higher constraint at the crack tip even under net-
section yielding condition. This increase depends on the ratio of thickness to weld metal height (2H )
as well as on the ratio of ligament length to 2H. However, the amplitude of this elevation for the
bending con®guration is not as high as that in the tension case, because in a homogeneous bend bar
there is already a higher constraint.

3. The e�ect of thickness on the pure bending con®guration with an extremely undermatched welded
joint has been investigated. Based on the 2D slip-line solutions and the 3D numerical analyses, a
relation for estimating the yield load has been suggested. A prediction from this relation coincides
with test results by Reuter et al. (1994).
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Appendix A

In Fig. 16 the line L is an interface and the superscript `I' or `II' represents the quantity in either
material. Consider an in®nitesimal element on L, from the stress continuity condition we have:

sW
n � sB

n ; tW
n � tB

n �A1�
and it is allowed to set

sB
t 6�sW

t �A2�
which represents the discontinuity of the transverse stress over the interface L.

From the equilibrium condition at both materials we have the relation

sB
n � sB

m ÿ
sYB���
3
p sin 2

ÿ
yB ÿ Z

�
; tB

n � cos 2
ÿ
yB ÿ Z

�
�A3a�

and

sW
n � sW

m � ÿ
sYW���

3
p sin 2

ÿ
yW ÿ Z

�
; tW

n � cos 2
ÿ
yW ÿ Z

�
�A3b�

where y denotes the helix angle of an a family slip-line, sm is the mean stress, sY represents the yield
strength of the material and Z is the angle between the normal vector of the interface and the x1-
coordinate (see Fig. 16).

Substituting Eqs. (A3a) and (A3b) in Eq. (A1) the following conditions of the stress components for a
slip-line ®eld across an interface can be obtained:

sB
m ÿ

sYW���
3
p sin 2

ÿ
yW ÿ Z

�
� sW

m ÿ
sYW���

3
p sin 2

ÿ
yW ÿ Z

�
�A4a�

and

sYB���
3
p cos 2

ÿ
yB ÿ Z

�
� sYW���

3
p cos 2

ÿ
yW ÿ Z

�
�A4b�

For the bi-material system shown in Fig. 9, the horizontal line is taken as x1-coordinate so that

Fig. 16. Illustration of the connection conditions of slip-line ®elds across an interface.
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Z � 0 �A5�

The kinematical permitted displacement ®eld requires:

yW � yB �A6�

Thus the necessary conditions for a slip-line penetrating an interface are

yW � yB � 458 �A7a�

and �
sB
11 � sB

22

2

�
�
�
sW
11 � sW

22

2

�
ÿ sYW���

3
p � sYB���

3
p �A7b�

The ®nite element techniques used are the same as described by Hao et al. (1997). A typical 3D mesh is
shown in Fig. 17.

Fig. 17. A typical 3D ®nite element mesh.
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